- Kniep, R., Mootz, D., Severin, U. & Wunderlich, H. (1982). Acta Cryst. B38, 2022-2023.
- Le Blanc, A., Danot, M. & Rouxel; J. (1969). Bull. Soc. Chim. Fr. pp. 87-90.
- Le Nagard, N., Collin, G. & Gorochov, O. (1979). Mater. Res. Bull. 14, 1411-1417.
- Lu, Y.-J. & Ibers, J. A. (1991a). Inorg. Chem. 30, 3317-3320.
- Lu, Y.-J. & Ibers, J. A. (1991b). J. Solid State Chem. 94, 381-385.
- Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1992). In preparation.
- Range, K.-J. & Mahlberg, G. (1975). Z. Naturforsch. Teil B, 30, 81-87.Rouxel, J., Cousseau, J. & Trichet, L. (1971). C. R. Acad. Sci. Sér. C, 273, 243-246.
- Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford Univ. Press.
- Sheldrick, G. M. (1990). SHELXTL/PC. Version 4.1. An integrated system for solving, refining and displaying crystal structures from diffraction data. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Trichet, L. & Rouxel, J. (1977). Mater. Res. Bull. 12, 345-354.
- Wu, P. & Ibers, J. A. (1992). In preparation.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1993). C49, 129-130

catena-[Cd{ μ -S(CH₂)₃NHMe₂}Br₂]

WILLIAM CLEGG

Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

ISIDRE CASALS AND PILAR GONZÁLEZ-DUARTE

Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

(Received 18 June 1992; accepted 14 July 1992)

Abstract

The title complex, *catena*-poly[dibromocadmium- μ -3dimethylamino-1-propanethiolato], contains polymeric chains of alternating Cd and S atoms with Cd—S bond lengths of 2.515(3) and 2.520(3) Å. Distorted tetrahedral coordination of Cd [with a wide S—Cd—S angle of 126.95(5)°] is completed by two Br ligands [Cd—Br 2.5834(15) and 2.6400(14) Å]. The longer Cd—Br bond is to a Br atom involved in inter-chain hydrogen bonding with the ammonium group of a mercaptoamine ligand of an adjacent chain, to give two-dimensional sheets.

Comment

Interest in cadmium-thiolate coordination chemistry centres mainly on structural and bioinorganic objectives (Dance, 1986; Blower & Dilworth, 1987). Cadmiumcysteine coordination in several metallothioneins has

0108-2701/93/010129-02\$06.00

been established by solution ¹¹³Cd NMR studies and by X-ray diffraction measurements (Robbins, McRee, Williamson, Collett, Xuong, Furey, Wang & Stout, 1991). As part of our extensive studies of the coordination chemistry of mercaptoamine ligands (Capdevila, Clegg, González-Duarte, Harris, Mira, Sola & Taylor, 1992, and references therein), and with the specific aim of correlating ¹¹³Cd solid-state NMR data with the coordination of Cd in different environments, we have determined the structure of *catena*-[Cd{ μ -S(CH₂)₃NHMe₂}Br₂].

The complex (Fig. 1) is isostructural with the corresponding chloride (Casals, González-Duarte, Sola, Font-Bardía, Solans & Solans, 1987) and with the analogous mercury chloride complex (Casals, González-Duarte, Sola, Miravitlles & Molins, 1988). It consists of polymeric chains of alternating Cd and S atoms. The mercaptoamine ligands are doubly bridging through the S atom only, the protonated amine group playing no part in the metal coordination. The tetrahedral coordination of Cd by two thiolate and two Br ligands shows slightly more distortion than in the corresponding chloride, but less than in the analogous Hg complex; the correlation between such geometrical variations and solid-state ¹¹³Cd NMR parameters will be the subject of a separate publication.

Fig. 1. Part of the polymeric chain structure, showing the labelling of the independent atoms.

The chains are held together in extended two-dimensional sheets by hydrogen bonding between ammonium groups and Br ligands. The $H \cdots Br$ and $N \cdots Br$ distances are 2.52(2) and 3.35(2) Å respectively, with an angle of 148(2)° at the H atom (these values are calculated from the refinement results, whereby the H atom was made to ride on its N atom with a fixed bond length of 0.93 Å). The Br ligand involved in hydrogen bonding forms a longer bond to the Cd atom.

Previous attempts to synthesize this complex gave no pure product, but a mixture containing also the salt $[\{Me_2NH(CH_2)_3S\}_2][CdBr_4]$ (Casals *et al.*, 1987). Comparable synthetic procedures with halides of Zn, Cd and Hg, and with the 4-mercapto-1-methylpiperidine ligand (a cyclic instead of linear γ -mercaptoamine) give dimeric $[M_2(\mu-SR)_2X_4]$ (Bayón, Casals, Gaete, González-Duarte

© 1993 International Union of Crystallography

C3

C5

& Ros, 1982). Cationic chains with pairs of mercap-S N Cl toamine bridging ligands are also known (Bayón, Briansó, Briansó & González-Duarte, 1979; Casals, Clegg C2 & González-Duarte, 1991). C4

Experimental

Crystal data

CdBr ₂ (C ₅ H ₁₃ NS)] $M_r = 391.44$ Monoclinic $P2_1/n$ a = 9.993 (1) Å b = 6.8236 (6) Å c = 16.398 (2) Å 3 = 96.00 (1)° V = 1112.0 (2) Å ³ Z = 4 $D_x = 2.338$ Mg m ⁻³	Mo K α radiation $\lambda = 0.71073$ Å Cell parameters from 32 reflections $\theta = 10.04-12.42^{\circ}$ $\mu = 9.279 \text{ mm}^{-1}$ T = 240 (1) K $0.52 \times 0.10 \times 0.08 \text{ mm}$ Colourless Crystal source: cooling from H ₂ O/EtOH/DMSO solu- tion
---	--

1652 observed reflections

 $[I > 2\sigma(I)]$

 $R_{\rm int} = 0.0391$ $\theta_{\rm max} = 24.97^{\circ}$ $h = -11 \rightarrow 11$

 $k = -8 \rightarrow 8$

 $l = -19 \rightarrow 19$

5 standard reflections frequency: 60 min

intensity variation: 3%

Data collection

Stoe-Siemens diffractometer ω/θ scans with on-line profile fitting (Clegg, 1981) Absorption correction: empirical (SHELXTL/PC; Sheldrick, 1990) $T_{\min} = 0.074, T_{\max} =$ 0.117 5481 measured reflections 1940 independent reflections

Refinement

Refinement on F^2	$\Delta ho_{ m min}$ = -0.597 e Å ⁻³
Final R (all data)= 0.0548	Extinction correction:
wR (all data) = 0.1412	SHELXL92 (Sheldrick,
S (all data)= 1.132	1992)
1934 reflections	Extinction coefficient:
94 parameters	0.0015 (3)
Calculated weights	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) +$	from International Ta-
$(0.0100P)^2 + 24.2500P],$	bles for Crystallogra-
where $P = (F_o^2 + 2F_c^2)/3$	phy (1992, Vol. C, Tables
$(\Delta/\sigma)_{\rm max} = 0.001$	4.2.6.8 and 6.1.1.4)
$\Delta \rho_{\rm max} = 1.184 \ {\rm e} \ {\rm \AA}^{-3}$	

Data collection: Stoe DIF4. Cell refinement: Stoe DIF4. Data reduction: local programs. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL92 (Sheldrick, 1992). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: local programs.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	U_{eq}
Cd	0.35841 (8)	0.52127 (11)	0.23959 (5)	0.0344 (5
Br1	0.49686 (13)	0.6731 (2)	0.13100 (8)	0.0528 (7
Br2	0.52522 (12)	0.2874 (2)	0.32915 (7)	0.0408 (7

0.1909 (3)	0.2932 (4)	0.1640 (2)	0.0328 (14)
0.2035 (10)	-0.1672 (15)	-0.0891 (6)	0.046 (6)
0.2964 (11)	0.1765 (16)	0.0930 (7)	0.038 (6)
0.2154 (11)	0.0380 (18)	0.0355 (6)	0.042 (6)
0.2914 (11)	-0.0417 (17)	-0.0316 (6)	0.040 (6)
0.1601 (15)	-0.3495 (19)	-0.0507 (9)	0.063 (9)
0.2677 (16)	-0.2124 (24)	-0.1649 (7)	0.070 (11)

Table 2. Geometric parameters (Å, °)

		-	
Cd—S	2.515 (3)	NC4	1.479 (17)
Cd—S ⁱ	2.520 (3)	N—C3	1.490 (14)
Cd-Br1	2.5834 (15)	N—C5	1.489 (15)
Cd-Br2	2.6400 (14)	C1—C2	1.509 (15)
S-C1	1.833 (11)	C2-C3	1.503 (14)
S—Cd—S ⁱ	126.95 (5)	Cd—S—Cd ⁱⁱ	108.08 (9)
S-Cd-Br1	106.57 (7)	C4—N—C3	113.2 (9)
S ⁱ -Cd-Br1	106.92 (7)	C4—N—C5	110.6 (11)
S-Cd-Br2	104.43 (7)	C3—N—C5	111.7 (10)
S ⁱ -Cd-Br2	104.47 (7)	C2-C1-S	111.3 (7)
Br1-Cd-Br2	105.86 (5)	C3-C2-C1	113.9 (9)
C1-S-Cd	100.7 (3)	NC3C2	111.2 (9)
C1-S-Cd ⁱⁱ	104.0 (4)		

Symmetry code: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$.

Reaction of stoichiometric amounts of CdBr₂.4H₂O and HS-(CH₂)₃NMe₂ in water-methanol (4:1) under nitrogen yielded a white powder, from which colourless crystals of the title complex were obtained by cooling a solution in a water-ethanol-DMSO mixed solvent. Satisfactory chemical analyses were found.

This work was supported by grants from SERC (UK) and CICYT (Spain, PB87-0188), and by an Anglo-Spanish Cooperative Action Award from The British Council and the Ministerio de Educación y Ciencia.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55593 (9 pp.). Copies may be obtained through The Technical Editor. International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AL1022]

References

- Bayón, J. C., Briansó, M. C., Briansó, J. L. & González-Duarte, P. (1979). Inorg. Chem. 18, 3478-3482.
- Bayón, J. C., Casals, I., Gaete, W., González-Duarte, P. & Ros, J. (1982). Polyhedron, 1, 157-161.
- Blower, P. J. & Dilworth, J. R. (1987). Coord. Chem. Rev. 86, 121-185.
- Capdevila, M., Clegg, W., González-Duarte, P., Harris, B., Mira, I., Sola, J. & Taylor, I. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2817-2826
- Casals, I., Clegg, W. & González-Duarte, P. (1991). Inorg. Chim. Acta, 184, 167-175.
- Casals, I., González-Duarte, P., Sola, J., Font-Bardía, H., Solans, J. & Solans, X. (1987). J. Chem. Soc. Dalton Trans. pp. 2391-2395.
- Casals, I., González-Duarte, P., Sola, J., Miravitlles, C. & Molins, E. (1988). Polyhedron, 7, 2509-2514.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Dance, I. G. (1986). Polyhedron, 5, 1037-1104.
- Robbins, A. H., McRee, D. E., Williamson, M., Collett, S. A., Xuong, N. H., Furey, W. F., Wang, B. C. & Stout, C. D. (1991). J. Mol. Biol. 221, 1269-1293.
- Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1992). SHELXL92. Program for refinement of crystal structures. Univ. of Göttingen, Germany.